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ABSTRACT 
 

Molecular imaging is becoming an important contributor to the development of personalized 

medicine.  Positron Emission Tomography (PET) is a technology that enables molecular 

imaging by allowing a physician to detect and map the location of various physiological 

processes.  The purpose of this work is to design, fabricate and test a mechanism that 

would make the production of the PET isotope, copper-64 practical for both researchers 

and commercial suppliers. In order to have the maximum usefulness, the design needs 

to fit and operate within several constraints.  A one dimensional thermal analysis 

indicated that operation of the system under existing cooling conditions would be a 

reasonable solution. Based on the design specifications, a detailed design was completed 

and fabricated.  The design was functionally and operationally tested with the performance 

meeting expectations.   The design was utilized to produce copper-64 isotope with a typical 

one hour bombardment producing 30 mCi of isotope.  The design could be optimized if 

future isotope demand exceeded current production capacity or if research required the 

production of other radioisotopes with varying thermal characteristics. 
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1. Introduction 

1.1 Molecular Imaging and PET 

Personalized medicine is the use of new methods of molecular analysis to better 

manage a patient’s disease or predisposition toward a disease. It aims to achieve 

optimal medical outcomes by helping physicians and patients choose the disease 

management approach likely to work best in the context of the patient’s unique genetic 

and environmental profile [1].  Typical medical imaging techniques, such as CT scans 

and MRI, show the structure of the body being imaged.  To diagnose a problem or 

disease it is also important to know what is taking place in that structure physiologically.  

Since all tissues operate on a chemical basis, knowing what chemical processes are 

occurring in the imaged tissue can provide information as to whether the tissue is 

diseased [2].  

 

Molecular imaging is defined as the in vivo characterization and measurement of biologic 

processes at the cellular and molecular level. Molecular imaging is a key modality 

enabling the move to personalized tailored treatments.  For example, molecular testing 

is being used to identify those breast cancer and colon cancer patients likely to benefit 

from new treatments [1]. 

 

Positron Emission Tomography (PET) is a type of molecular imaging where an unstable 

radioisotope from a radiopharmaceutical or biomarker emits a positron, which looses 

energy through collisions with surrounding atoms and molecules.  The positron then 

combines with an electron and annihilates producing a pair of 511 keV photons, emitted 
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roughly 180 degrees apart.  By monitoring the location of decay events with a ring of 

scintillating crystals, the location of the biomarker that is consumed in a body’s 

biochemical process can be determined and imaged [2]. 

  

In recent years, PET has become a major diagnostic tool in determining the occurrence 

or stages of cancer because it shows on a fundamental level what is taking place within  

tissues.  A major issue with commercial use of PET is that the short half lives of 

radioisotopes normally used for these studies generally requires they be made on-site.  

A common method of generating radioisotopes used in PET scans is through the use of 

cyclotrons. Cyclotrons accelerate a beam of particles in a circular path, increasing their 

energy until the beam is deposited onto a target containing the element to be transmuted 

into the desired radioisotope [3]. The costs associated with purchasing and maintaining 

a cyclotron creates barriers to PET adoption [2].  Most of the PET patient doses 

produced in the United States are produced by large commercial interests.  

 

Research utilizing PET isotopes is sometimes limited by the radioisotope availability.  

Copper-64 is an example of a promising PET isotope which suffers from lack of 

commercial interest because it usually requires a dedicated target system [4].  This 

means a commercial producer would lose the ability to produce other isotopes on their 

cyclotron. 

 

The 12.7-hour half-life of copper-64 provides the flexibility to image both smaller 

molecules and larger, slower clearing proteins. In a practical sense, the radionuclide can 

be easily shipped for PET imaging studies at sites remote to the production facility. Due 

to the versatility of copper-64, there has been an abundance of novel research in this 
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area, primarily in the area of PET imaging, but also for the targeted radiotherapy of 

cancer [4].  The most researched clinical application is for hypoxia detection in tumors 

[1].  Hypoxic tumors do not use oxygen and are thus not as sensitive to traditional 

chemotherapy. Compounds labeled with copper-64 are preferentially taken up by 

hypoxic cells compared to normoxic cells with the extent of retention in tissue being 

inversely related to the state of tissue oxygenation.  This effect allows the quantification 

of tissue hypoxia by positron emission tomography.  Biomarkers labeled with copper-64 

radioisotope offer the potential to identify hypoxic tumors and provide the information 

necessary to modify treatment.   

1.2 Purpose 
 
The purpose of this work is to design, fabricate and test a mechanism that would 

make the production of copper-64 practical and appealing to both researchers and 

commercial suppliers. Specifically, the work is to design a solid target and handling 

system which would function on an existing commercial target platform that will 

maintain the ability to produce standard radioisotopes as well as copper-64. An 

optimized, efficient system that would allow a commercial supplier to offer standard 

liquid and gas target products along with solid target products would be beneficial to the 

development of PET. 

1.3 Synopsis of Chapters 

Chapters 1 and 2 provide introductory material and establish the purpose and 

applicability of the work. Chapter 3 details the design elements that were considered 

during the work. Areas of focus such as scope, basic concepts, materials, thermal and 

mechanical considerations are discussed. Chapter 4 establishes the operating 



www.manaraa.com

 4

parameters and methodology for the design. Chapter 5 reviews the testing protocols and 

results for bench top, cyclotron and field testing.  Chapter 6 offers summary and 

conclusions along with recommended future work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 5

2. Background 

PET has been used in large scale clinical practice for the last 10 years. Numerous PET 

isotopes are commercially available on a daily on-demand basis.  There are 

approximately 120 commercial cyclotrons in the United States and an additional 250 

world wide dedicated to the production of PET isotopes. The most widely used PET 

isotopes are list in Table 1 [2].   

 

Table 1 : Common PET Isotopes 
 
Product Target Material Target Type 1/2Life (min) Reaction 

F-18 O-18 Liquid 110 O18(p,n)F18 

C-11 N2 gas +2.5%O2 Gas 20 N14(p,alpha)C11 

N-13 Sterile water + 5mmol EtOH Liquid 10 O16(p,alpha)N13 

O-15 (N15)N2+2.5%O2 Gas 2 N15(p,n)O15 

 

All of these isotopes are produced from liquid or gas targets and they can be produced 

in adequate quantities from cyclotrons with proton energies above 7 MeV.  In contrast, 

copper-64 is produced from a solid target material [5].  Generally, solid target reactions 

require energies at or above 11 MeV in order to produce quantities sufficient for 

commercial production.   

 

Copper-64 is produced by the bombardment of nickel -64 with energetic protons. The 

production of copper-64 via energetic proton bombardment on a cyclotron was validated 

with low current irradiations and the feasibility of copper-64 production by this method 

was demonstrated by Szelecsenyi [6]. 
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The handling and cooling requirements of solid targets differ from liquid and gas targets.  

The target material must be handled by a mechanical process as opposed to flow of a 

liquid or gas.  Additional components for cooling and complexity of operation required to 

enable a solid target system make them less attractive to commercial suppliers.   
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3. Design 
 

3.1. Scope 
 
The scope of the design is to provide a target system which can be used to produce 

isotopes from solid targets and can be retrofitted onto an existing cyclotron without 

losing the ability to produce isotopes from liquid or gas targets. If successful, this will 

make the potential install base of cyclotrons immediately available for upgrade to the 

solid target option.  To minimize the impact on standard production, the new design 

deployment should be capable of being installed in a relatively short time period. 

 

The new solid target system must allow the use of all standard liquid and gas targets.  If 

this were not the case, researchers might be unwilling to lose access to all liquid and gas 

produced isotopes in exchange for the somewhat limited production of copper-64.  The 

solid target system must also operate within the existing envelope for space, control, and 

cooling systems. 

 

From a performance standpoint, the system must be capable of producing useful 

quantities of the copper-64 isotope from cyclotrons that produce protons with energy of 

11 MeV.  For most research applications, this means use of 1-2 mCi for pre-clinical 

animal imaging and 10-20 mCi for clinical applications at injection. Therefore, when 

radioactive decay and chemical processing time are taken into account, the quantity 

from the target should be in excess of 30 mCi. 
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Another important consideration is that the design must limit the radiation exposure of 

personnel when loading or unloading the target with as much of the operation as 

possible being automatically and remotely controlled. 

3.2. Concepts 
 

3.2.1. Nuclear Reactions 
 
The three most common types of targets used to produce PET radioisotopes are liquid 

and gas and solid.  In addition, the most common PET radioisotope is fluorine-18, of 

which approximately 1.5 million doses are produced annually in the United States. The 

primary use of fluorine-18 is in oncology for treatment monitoring. Fluorine-18 is 

produced from the liquid target reaction: 

 

   O18 →  ( p,n ) →  F18      (1) 

 

This nomenclature is used to denote oxygen-18 as the target material and fluorine-18 as 

the product as a result of neutron capture when under a beam of energetic protons.    

The solid target copper-64 reaction is : 

 

   Ni64 →  ( p,n ) →  Cu64      (2)  

3.2.2. Reaction Rate 

The production rate of a nuclear reaction will determine the practicality of using that 

reaction to produce the isotope.  If the production rate is low, the cyclotron would need to 

run longer to produce the required quantity, thus impacting the production run of the 

following isotope.  
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The nuclear reaction production rate is a function of the proton energy, current density 

and target material [7].  The production rate of any reaction is a function of the cross 

section of the reaction.  To characterize the probability that a certain nuclear reaction will 

take place, it is customary to define an effective size of the nucleus for that reaction, 

called a cross section, which is defined by : 

   
I

R
=σ         (3)  

Where :  

 =σ cross section 

 =I  number of incident particles per unit time per unit area 

 =R number of reactions per unit time per nucleus 

It must be noted that, the cross section is on the order of the square of the nuclear 

radius. A commonly used unit is the barn 

 1 barn = 22810 m−  

For copper-64 the nuclear reaction cross section at energies up to 14 MeV is shown in 

Figure 1 [8] with the units of cross section as millibarns.  The data in Figure 1 is 

experimentally determined based on the research as indicated on the graph. 
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Figure 1 : Cross Section for Ni64(p,n)Cu64        
 

As can be seen in Figure 1, the production rate for the nickel-64 (p,n) copper-64 reaction 

is maximum in the energy range from 9 to 12 MeV [8]. The theoretical production rate for 

this reaction is determined by integrating the cross section curve. 

 

3.2.3. Energy Input 
 
For all target types, the key performance parameter is the ability to effectively remove 

the heat deposited during the proton bombardment.  The heat input can be calculated 

from the beam current and proton energy as shown below: 

 

   
s

C
A 6101 −=μ  = 

+
−

−

p

C
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   )()( MeVEwattsQ = x )( AI μ      (6) 

 

This relationship indicates that the power input (watts) from a proton bombardment is the 

product of the proton energy (MeV) and the proton current (uA).  The proton current is 

the number of protons per second that interact with the target material. An 11MeV beam 

of protons at 60 uA produces 660 watts of energy conversion.  As can be seen, 

increasing the proton current increases the heat load, but also is necessary to increase 

the production of the desired isotope. 

3.2.4. Solid Target Processing 
 
The typical process for the production of a solid target involves plating a thin layer 

(around 0.1 mm) of target material onto a target support [9]. The target material is 

typically an enriched naturally occurring material. The enrichment process typically 

increases the production cost of the target material. The target disk provides the support 

for the target material as well as the interface to the seals and cooling system needed for 

operation.  The target disk is then bombarded with energetic protons and the nuclear 

reaction occurs.  The reaction converts only a small percentage of the enriched target 

material into the product isotope, with the remaining target material being available for 

reclaim. The radioactive target disk is typically placed in an acid solution to remove the 

plating [5].  The solution is then processed and neutralized and the product is attached 

to a biological molecule of interest.  The unused enriched target material is reclaimed 

and used to plate the next target disk. 
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3.2.5. Proton Interaction 
 

In nuclear physics, charged particles moving through matter interact with the electrons of 

atoms in the material. The interaction excites or ionizes the atoms, which leads to an 

energy loss as given by the Bethe formula [12]. The Bethe formula describes the energy 

loss per distance traveled of charged particles passing through matter [13].  This is also 

the resultant stopping power of the material.  

The proton enters the target with an initial kinetic energy.  After undergoing Coulombic 

interactions and radiation losses (bremsstrahlung), the kinetic energy of the proton is 

reduced after traveling a distance x along its path.   Stopping power is defined as 

incremental energy lost (dE) per unit distance traveled (dx), or (-dE/dx).  As the proton 

decelerates the stopping power increases further back into the target, reaches a peak, 

and drops off to zero [12].   

 

The relativistic version of the Bethe formula is given by: 

   -
dx

dE
 = 2

4
cme

π
 · 

2

2

β
nz

 · 
2

0

2

4 








πε
e

· 











−









−⋅
2

2

22

)1(
2

ln β
β
β

I

cme   (7) 

Where :           

 
c

v
=β  

 =υ velocity of the particle 

 =E energy of the particle 
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 =x = distance traveled by the particle 

 =c speed of light 

 =z particle charge 

 =e charge of the electron 

 =em  rest mass of the electron 

 =n electron density of the target 

 =I mean excitation potential of the target 

 =0ε vacuum permittivity 

For low energies where the velocity of the particle is small ( 1<<β ),  the Bethe equation 

simplifies to : 

   -
dx

dE
 = 2

24
vm

nz

e

π
 ·  

2

0

2

4 








πε
e

· 




















I

vme
22

ln                   (8)            

Here the electron density can be calculated by: 

   
uAM

NaZ
n

ρ
=                (9) 

Where : 

 =Na Avagadro’s number 

 Z = atomic number 

 =ρ Density  
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 =A mass number 

 =uM mass molar constant 

The National Institute of Standards and Technology maintains a database (PSTAR) 

which can be used to calculate the penetration range in various materials for protons.  

For proton energies above 0.5 MeV, the database utilizes the Bethe formula to generate 

the penetration ranges. The range of protons interacting with elemental gold and nickel 

are shown in Figures 2 and 3 respectively. 

 

Figure 2 : Range of Protons in Gold 
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Figure 3 : Range of Protons in Nickel 

 
 
The y-axis data is the penetration range in the units of g/cm2 and the x-axis is a range of 

proton energy.  In order to determine the distance in cm, it is necessary to divide the 

penetration range by the density of the material.  The data is collected in Table 2. 

 

Table 2 : Proton Penetration 

Material Range ( g/cm^2) 

Density 

(g/cm^3)

Penetration 

Distance (cm) 

Gold 0.3922 19.3 0.0203 

Nickel 0.2551 8.9 0.0287 

 

As can be seen from the data in Table 2, protons with an initial energy of 11MeV will 

penetrate 0.203 mm in gold and 0.287 mm in nickel.  Since the enriched plated nickel is 

typically 0.1 mm thick, the proton beam passes through the nickel and deposits the 

majority of its energy upon stopping in the gold support disk.     
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The protons deposit energy in a non-linear fashion as they penetrate into the target disk 

material.  The data from the NIST PSTAR program can be used to calculate the change 

in energy per change in distance (dE/dx) and then graphed relative to the penetration 

distance.  The resulting graph is the Bragg curve, with the dramatic rise in dE/dx at the 

end of the penetration distance identified as the Bragg peak.  This graph, shown in 

Figure 4 illustrates that the majority of the heat load is deposited near the maximum 

penetration distance.  

 

Bragg Curve 
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Figure 4: Bragg Curve 
 

3.3. Materials   
 

3.3.1. Target and Support 
 
The target material for the production of copper-64 is naturally occurring nickel 64 

isotope [4]. Nickel 64 enriched to greater than 90 % purity is expensive and thus targets 

are typically fabricated with a thin layer of nickel plated onto a more substantial target 
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disk.  Physical and chemical properties must be taken in to account when choosing a 

material for the target disk. For example, some applications require the material of the 

plate to be resistant to acidic solutions, especially when wet chemistry is necessary for 

the separation of the radioactive product from the target material. In cases where a dry 

distillation process is required for the separation of the product, materials that do not 

react with the target material at high temperatures are preferred. Another important issue 

to be considered when choosing a target disk is the proton activation of the material. 

Note that all materials will suffer activation at different levels with different half-lives and 

associated radiation fields of the activated products. However, this problem can be 

mitigated by careful selection of the target support As a result, target disks are typically 

fabricated from non reactive noble metals such as gold or platinum.   

3.3.2. Machined Parts 
 
The machined parts which hold or transport the target disk in the target changer must be 

as non reactive as possible to the gamma and neutron fields created during the 

bombardment.  They must also have good cooling properties and be non reactive to de-

ionized water, which is used for target cooling.  They should have excellent machining 

properties, be capable of attaining a good surface finish, and have sufficient mechanical 

properties for the structural requirements.  A typical material for these components is 

6061 aluminum alloy. 

3.3.3. Seals 
 
The sealing materials must stand up to the gamma and neutron fields as well.  They 

must have low out gassing properties due to their exposure to the high vacuum areas. 

They must have thermal properties that prevent them from deforming or melting during 

bombardment, and they should be inert to all chemicals they may contact during normal 
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operation.  The BL grade of the fluoroelastomer Viton has the appropriate properties for 

most uses in target design. 

3.4. Thermal  

3.4.1. Introduction 
 
Heat is deposited at and below the surface of the target by the energetic proton 

bombardment.  The heat deposition is linear with beam current, thus the amount of heat 

that can be effectively handled by the target design directly affects the production 

capacity of the target. A common method of dealing with poor thermal design is to limit 

the beam current to very low levels [10]. Thus, in order to meet the required production 

rates, it is necessary to optimize this design to withstand the maximum beam current 

that can be produced on the cyclotron. The high vapor pressure of the thinly plated 

target material mandates a maximum temperature well below the melting point of the 

target material or the target disk [10].  For the materials used in this work, the melting 

point of gold is 1059 oC and nickel is 1453 oC. The configuration of the target disk 

relative to the proton beam and cooling is shown in Figure 5. 

 

Figure 5 : Target Cooling 
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Where : 

 =tT temperature of the target disk wall on the target side 

 =fT temperature of the cooling fluid, typically 7 Co  

 =wT temperature of the target disk wall on the cooling side 

 

As can be seen from Figure 4, the proton beam impacts the front of the target, passing 

through the nickel-64 and depositing energy in the target disk.  The front side of the 

target disk is in high vacuum with typical values for the vacuum level of 5 x 10-6 torr.  The 

cooling processes are conduction through the target disk, and forced convection from 

the target disk to the circulating cooling fluid.  The cooling fluid is maintained at 7 oC by 

an external dual pass heat exchanger. 

 

A one dimensional thermal analysis will be performed to determine if designing to the 

operational current limit of 60 μ A is feasible with the given cooling fluid, temperature and 

flow rate.  This will guide the development of the design by indicating if the desired 

approach of interfacing to the existing install base of cyclotrons is a practical avenue to 

pursue. 

3.4.2. Conduction 
 
The thickness of the plate support will be kept as thin as practicable possible to facilitate 

the heat dissipation, but thick enough to guarantee sufficient mechanical strength to 

withstand the pressure of the cooling water and the structural rigidity to compress the 

sealing materials. Efficient cooling for this dynamic system requires that the plate 

support be made of a material with a high thermal conductivity and low heat capacity 
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[10]. Usually, materials with high conductivity to capacity ratio are desirable to efficiently 

remove the heat generated by the beam power on the target support.  

 

Fourier’s Law of Heat Conduction for an isotropic material can be stated as [11]: 

   TKQ ∇−=        (10) 

Where : 

 =Q heat flux  , 2m

W
 

 =K thermal conductivity of the material ,  
mK

W
 

 =∇T temperature gradient in 3 dimensions , 
m

K
 

In order to determine the feasibility of cooling the target in the defined conditions 

available, a one dimensional approximation in the x direction was performed. The x 

direction is defined as along the axis of the incoming proton beam. In Cartesian 

coordinates, the x component of this equation is: 

   
x

T
KQx ∂

∂
−=        (11) 

If Since the heat flow is one-dimensional: 

   
dx

dT
KAAQ xxx −=       (12) 

Since the heat transmission is steady and the thermal conductivity of the material and 

thickness are constant, the above equation becomes: 

 

   
L

TKA
q

Δ
=        (13) 
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Where: 

=q  heat input , w 

=K  thermal conductivity of target disk material , 
Cm

w

−
 

TwTtT −=Δ , C  

=L  thickness of the target disk, m  

=A  area of heat input normal to the x direction, 2m  

 

Table 3 shows the calculated temperature differential across the target disk based on 

varying beam currents and target disk material.  The target disk materials included in the 

table are the most commonly utilized noble metals for this application due to their high 

thermal conductivity and their non-reactive properties when exposed to the chemicals 

used in the plating and dissolution processes.  The beam area is based on the 

collimated beam size of 10 mm diameter.   

 

Table 3 : Conduction Calculations 
 

Energy 
( MeV) 

Current 
(uA) 

Q 
(w) Material 

K (w/m-
C) 

Thickness 
(m) 

Beam 
Area (m2) 

Temperature 
differential (C) 

11 20 220 Gold 318 0.002 0.0000785 17.6 
11 40 440 Gold 318 0.002 0.0000785 35.3 

11 60 660 Gold 318 0.002 0.0000785 52.9 

11 20 220 Silver 429 0.002 0.0000785 13.1 
11 40 440 Silver 429 0.002 0.0000785 26.1 

11 60 660 Silver 429 0.002 0.0000785 39.2 

11 20 220 Platinum 73 0.002 0.0000785 76.8 
11 40 440 Platinum 73 0.002 0.0000785 153.6 
11 60 660 Platinum 73 0.002 0.0000785 230.3 
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The temperature differential is the calculated value across the target disk.  The optimal 

current is 60 uA, as this is currently the maximum output from the cyclotron.  From the 

data in this table, the most applicable target disk material could be either gold or silver.  

From a chemical reactivity viewpoint, gold is less than half as reactive as silver, so it is 

the preferred option.  Thus the data in Table 2 indicate that at a full beam current of 60 

μ A, there will be a 52.9 oC temperature differential from the target side of the disk to the 

cooling side of the disk. 

3.4.3. Convection 
 
The target disk is cooled by water impinging at 90o on the back or non-target side.  The 

water is de-ionized and cooled to 7 Co , with an available flow rate of 0.5 gallons/minute.   

The cooling water is directed onto the back of the target disk so that it acts as a 

submerged jet arrangement.  For all studies performed it has been shown that, for a 

constant jet diameter, heat transfer increases with increasing Reynolds number (Re) , 

with the Nusselt number (Nu)  proportional to Re 0.5 to 0.8. 

Convection is described by Newton’s law of cooling, which states that the rate of heat 

loss of a body is proportional to the difference in temperatures between the body and its 

surroundings.  

   ThAq Δ=        (14) 

Where : 

 

 =q  heat input , w 
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 =h  coefficient of convective heat transfer , 
Cm

W
o−2  

 

 =A surface area of heat transfer, m2 

 

 )( fw TTT −=Δ , oC 

 

The convective heat transfer coefficient depends upon physical properties of the fluid 

such as temperature and the physical situation in which convection occurs. Therefore, 

the heat transfer coefficient must be derived or found experimentally for every system 

analyzed. Formulas and correlations are available in many references to calculate heat 

transfer coefficients for typical configurations and fluids. For laminar flows, the heat 

transfer coefficient is rather low compared to the turbulent flows; this is due to turbulent 

flows having a thinner stagnant fluid film layer on heat transfer surface. For this 

application, the value for h will be estimated from the definition of the Nusselt number: 

 

   waterK
L

Nu
h =        (15) 

 

Where : 

 

 =Nu Nusselt’s number  

 =waterK  thermal conductivity of water = 0.58 
Cm

W
o−

 

 =L length of flow , m 
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The Nusselt number is the ratio of convective to conductive heat transfer across the 

boundary.  A large Nusselt number, between 100 -1000, corresponds to more active 

convective heat transfer.  For forced convection, the Nusselt number is a function of the 

Reynolds number and the Prandtl number.  The Nusselt number for this application will 

be estimated from the Dittus-Boelter equation as shown in equation (16).  The Dittus-

Boelter equation is valid for 0.7 < Pr <160 and Re > ~10,000.  This estimation of the heat 

transfer coefficient will be conservative in that it is for flow in a smooth pipe and the 

actual configuration of flow onto the target disk is a submerged jet arrangement more 

likely to disturb the thermal boundary layer. 

 

   4.08.0 PrRe023.0=DNu      (16) 

 

Where : 

   Re = 
μ
ρ

VL        (17) 

   Pr = Cp
K

μ
       (18) 

 

Where : 

 =V velocity of water flow , 
s

m
 

 L =length of flow , m,  = .003 m for this application 

 =K thermal conductivity of water = 0.58 
Cm

w

−
 

 =ρ density of water = 1000 3m

kg
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 =μ viscosity of water = .001 
sm

kg

−
at 20 Co  

 =pC  specific heat of water = 4186 
Ckg

J

−
 

 

By calculation, Pr = 7.217.  The velocity component of the Reynolds number is 

calculated by treating the port that routes cooling water onto the back of the target disk 

as an orifice flow. 

   
Ak

Q
V =        (19) 

Where :  

 =A area of orifice 

 

 =k orifice geometry factor = 0.82  

 

Table 4 provides the results of calculations with varying cooling flow rate and orifice size. 

 

Table 4 : Convective Heat Transfer Coefficient Calculations 
 

Volumetric 
flow rate 
(gpm) 

Volumetric 
flow rate 
(m3/s) 

Orifice 
size 
(mm) V (m/s) Re Nu h (w/m2C)

0.5 3.15E-05 3.0 5.44 19031 134 22284 
0.5 3.15E-05 3.5 3.99 13982 105 17413 
0.5 3.15E-05 4.0 3.06 10705 85 14063 

 

The values for the coefficient of heat transfer from Table 4 , were then used to generate 

the temperature differentials in Table 5. 
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Table 5 : Summary Temperature Calculations 
 

h (w/C) Q (w) A (m2) Water (°C) delta t (°C) Tw(°C) Tt (°C) 

22284 660 0.0001266 7 233.9 240.9 293.8 
17413 660 0.0001266 7 299.4 306.4 359.3 
14063 660 0.0001266 7 370.7 377.7 430.6 

 

From the results in Table 5 , it can be seen that the expected temperature on the target 

side of the target disk ranges from 293.8 oC to 430.6 oC depending on orifice size. 

 

The one dimensional approximation provides the basic understanding of the impact of 

the orifice size and flow rate on the thermal design.  With an orifice size of 3.5 mm 

diameter and gold as a material, the project temperature profile is: 

 

 

 

 

 

Figure 6 : Final Temperature Profile 
 

7 oC

359.3 oC

306.4 oC
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The result of the thermal analysis indicates that operation of the target system at full 

current should produce a maximum temperature that has a ‘safety factor’ of 

approximately 3 times the melting temperature of gold. 

 

3.5. Mechanical 
 

3.5.1. Overview 
 
The design of the solid target system needed to take into account several operating 

envelopes in order to be successful in accomplishing the design intent of enabling the 

wide spread production of solid target products.  First, the system must fit within an 

existing operating space. The target system and any required support equipment must 

physically fit inside the moveable shielded enclosure around the cyclotron.  It must also 

allow the simultaneous operation of standard liquid and gas targets.  The design must 

allow as much remote or automatic handling process as possible in order to reduce 

radiation exposure to personnel.  And finally, the design must function at a beam current 

that makes practical amounts of isotope, while being cooled by an existing cooling 

supply system. 

3.5.2. Alternate Designs 

In the process of researching the best design solution, several design approaches were 

considered.  An initial concept was to attach the target disk into a carrier insert that 

would fit within an existing target carousel.  The benefit of this design would be a small 

operating envelope and the repeatability of target sealing during bombardment..  This 

design had the serious limitation of not allowing the target disk to be remotely removed 

once proton bombardment was complete.  This would potentially expose operators to 
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excessive radiation as they worked to disassemble the irradiated target disk.  Also, an 

extra set of seals would have been required to perform the sealing operations.  The 

target disk would have been sealed within its holder, and then the holder would have 

been sealed to interface to the existing target carousel. 

 

A second design concept was to have an external mechanism which could be loaded 

and unloaded remotely, while translating the target disk into the target carousel.  While 

this concept solved most of the design limitations, it had several negative features.  The 

mechanism would not fit within the moveable shielded enclosure, and would have 

required a special shield insert.  This would have limited the ability to retrofit the design 

onto existing cyclotrons due to the cost of shield installation and the down time required.  

In addition, this concept could not interface to the existing vacuum system.  Modifying 

the vacuum system would have limited the target carousel to solid target only operation.   

3.5.3. Design Description 

The successful design was initiated with modification to the basic target carousel.  If the 

required mechanisms could be incorporated into this envelope, it would enable the 

automatic position control system to function the same as currently designed.  It would 

also provide the interface to the existing cooling system, compressed air system and 

vacuum system.  The mechanism utilized would fit within a portion of the target carousel 

without disturbing the cooling paths or utility arrangements needed to support the current 

liquid of gas targets.  The new mechanism would not extend beyond the envelope of the 

existing target carousel and thus have no interference with the moveable shielding.   

 
The design that accomplished all of the key design requirements is illustrated in Figure 7 

with key components of the design identified in the figure. 
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Figure 7 : Solid Target Assembly 
 

 

The target carousel was modified to accept the solid target mechanism.  The placement 

of the target disk is a manual operation because prior to bombardment there is no risk 

from radiation exposure.  In order to introduce the target disk into the target port , a slot 

was machined into the modified target carousel that was slightly larger than the target 

disk.  This slot is shown in Figures 8 and 9.  The slot allows the target disk to be dropped 

into and fall out of the target carousel, while not crossing any of the internal water 

cooling or vacuum paths. Due to the critical dimensions of the slot and its depth , the 

proposed machining method is electro discharge machining (EDM).   

 

The target carousel also provides the alignment detents for software controlled 

positioning of the target changer.  The alignment detents interface to an array of three 

detent switches.  The pattern of these switches is coded to represent a target position in 

Insert Cylinder Bracket

Target Carousel

Standard Target

Holder
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the software control system.  These detent locations are used when the target changer 

carousel is rotated in operation from the service port position to the beam port position.  

The service port allows the target in that position to be removed and serviced without 

affecting the main cyclotron vacuum level.  The target changer carousel incorporates a 

series of face seal o-rings that establish three different and isolated vacuum zones. The 

alignment detents are identified in Figure 8. 

                                 

 

Figure 8 : Modified Target Carousel 
    

                                   

Figure 9 : Access Slots 

Target Port

Slot

Alignment Detents

Slot
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The holder is an aluminum piece which has been machined from a solid billet. The 

function of the holder is to provide the cooling channels to route the cooling water onto 

the target disk, align the insert, and provide a matching slot to the target carousel.  The 

internal diameter of the holder is key to proper operation of the system.  The bore 

alignment and surface finish were tightly controlled.  The entrance to the slot is 

chamfered to allow some misalignment between the insert and target carousel. The key 

features of the insert are identified in Figure 10. 

 

                                

Figure 10 : Holder 
                                                  

The insert performs several functions in the design of the solid target system.  The insert 

provides a protrusion that locates the target disk as it is loaded through the slot.  When 

the insert is located in the LOAD position, the protrusion blocks the slot from below and 

allows the target disk to slide into position. 

 

Seal Grooves

Target Slot 

Cooling Channel 

Alignment Bore 
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The insert is attached to a three position cylinder, which allows the target disk to fall from 

the carousel when retracted.  It also routes cooling water onto the target disk and 

provides the face seals.  The air pressure which actuates the cylinder must be regulated 

so that the required axial force is available to compress the two seals.  For the cross 

section and hardness of the seals, the compression force necessary for sealing is 

approximately 5 pounds per linear inch.  This equates to a required force of 22 lbf.  As 

the pneumatic cylinder piston area is 0.40 inch2. , the supply pressure must be 

maintained above 55 psi for the system to seal properly.  The cooling water channel is 

configured so that as the insert moves within the housing, cooling water continues to 

flow to the target disk.  These features are identified in Figure 11: 

 

                            

 

Figure 11 : Insert 
                                   

The assembly and interfaces between the holder and the insert are shown in Figure 12.  

The path of the cooling water is indicated by the blue arrows.  As the insert moves within 

the holder, from LOAD to COMPRESS to UNLOAD positions, the cooling water supply is 

maintained.   

Seal groove 

Cooling Channel 

Cooling Port 

Protrusion 
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Figure 12 : Cooling Path 
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4. Operation 
 

The operation of the solid target system is controlled from the existing cyclotron control 

software.  Both automatic and manual operational modes are available.  The graphical 

user interface (GUI) shows the status of valve positions, vacuum levels, and readiness 

for beam.  Figure 13 shows a screen capture of the control system. 

 

 

Figure 13 : Control System 
 

The operation starts with preparing the cyclotron to receive the plated target disk.  In 

order to open the shielded enclosure, the control system verifies that the proton beam is 

off.  This is accomplished by removing power to the ion source bias supply so that no 

negative ions can be drawn into the accelerating region. Once this is verified, the 

operator can open the movable shielding and gain access to the target carousel.  
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In order to place the plated target disk into the carousel, the solid target position must be 

rotated to its service position as identified in Figure 14.  The cooling water must then be 

rerouted to by pass the target carousel and the remaining water removed by pressurized 

air.  These steps are controlled by the central control system actuating valves.  Once the 

target carousel is dry, the service port vacuum can be relieved and brought to ambient 

pressure.  The target carousel is now ready to receive the plated target disk. 

 

The control system is used to place the insert into the LOAD position, where the 

protrusion blocks the slot and the insert is actuated by a three position pneumatic 

cylinder.  The plated target disk is then loaded manually into the target carousel.  As the 

target disk falls into the target carousel, this protrusion stops the disk and holds it in 

proper position. 

 

The pneumatic cylinder is then actuated to compress the target disk between two o-ring 

seals.  The seals are located on the face of the target carousel and in the insert.  Once 

compressed, the target disk is sealed from vacuum on the beam side and from the 

cooling water on the back side. The seals are retained in their grooves by use of a single 

dovetail groove design.  The vacuum and cooling water are now engaged by the control 

system.  

 

The target is now ready to be moved into the beam port position.  This is accomplished 

by rotating the target carousel in the target hub.  A series of o-rings mange the vacuum 

levels as the target carousel rotates into position to prevent rapid loss of main tank 

vacuum.   
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Figure 14 : Basic Carousel Arrangement 
 
 

The target is now in the beam position and can be bombarded with protons.  

Bombardments of solid targets can vary from 1 hour to 12 hours depending on the 

nuclear reaction and production rate. After bombardment, the target disk is rotated back 

to the service port and the cooling water is stopped.  The excess water removed by 

blowing compressed air through the system.  The vacuum to the service port is then 

removed.  The pneumatic cylinder is actuated to retract the insert so that the target disk 

is allowed to drop from the target carousel into a shielded container. 

 

 

 

 

 

 

 

 

Service Port

Beam Port

Rotating Carousel
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5. Testing and Results 
 

5.1. Assembly and Bench Testing 
 
In order to evaluate and validate the design, a testing plan was created which 

established criteria for applicable operational parameters and acceptable performance.   

 

Detailed engineering prints were created for each of the components of the design as 

well as the overall assembly. The individual components of the assembly were 

fabricated and inspected to these prints. Upon receipt of the parts, they were cleaned 

per standard procedure for high vacuum use.   This process involves ultrasonic 

immersion in a series of progressively weaker de-greasing agents.   

 

The parts were assembled up to the level as shown in Figure 15. During assembly the fit 

of each part and its design parameters were carefully checked. 

                                        

Figure 15 : Initial Assembly 
 
This sub-assembly was then mounted into the modified target carousel, which was 

mounted onto a target changer test fixture.  At this point, the target assembly was 

checked to ensure proper fit to the mounting assembly.  Proper rotation and alignment 

was also verified.  The service port was then connected to a vacuum pump and the 

vacuum integrity of the system was verified.  During this portion of the testing, actuation 
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of the three position cylinder was performed by air pressure routed by the manipulation 

of a series of manual valves. 

 

The completed assembly , which is shown in Figure 16, was removed from the test 

fixture and mounted on a beam port of an 11MeV proton cyclotron.   

    

                                    

Figure 16 : Mounted Solid Target System 
  

5.2. Cyclotron Testing 
 
Cyclotron testing consisted of several phases.  First the mechanical fit and operational 

verification was performed.  This was accomplished by mounting the target assembly 

onto the cyclotron, while checking for alignment, fit and clearance issues. At this point , 

the water cooling supply and return hoses were connected and checked for clearance.  

The electrical connections were made and communication with the central cyclotron 

control system was verified. The shields were moved from open to closed position while 

checking for interferences or clearance issues. 
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The functional testing of the solid target system consisted of controlling the system from 

the control computer and loading the target disk, compressing the target disk, unloading 

the target disk.  The action sequence was performed 25 times without failure. 

 

The next phase of testing was the high vacuum integrity testing.  The cyclotron main 

tank vacuum was opened into the target changer and vacuum levels were recorded .  

The cooling water was turned on to the target changer. It is important to check the 

vacuum levels with the cooling water flowing to both verify the water seals and the 

performance of the seals at operational temperature. The target position was rotated 

from the service port into the beam port. The target changer position was then rotated 

from the beam port back to the service port.  The cooling water was rerouted to bypass 

the target changer carousel and the residual water was removed by compressed air.  

The various valves required to perform these operations were controlled by automatic 

code from the central control computer. The service port vacuum was then vented and 

the target automatically unloaded.  The results are recorded in Table 6 . 
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Table 6 : Vacuum Testing Results 
 

Test  

Service port Vacuum level 

(torr) 

Main tank vacuum 

level  (torr) 

Target extraction 

successful 

1 0.18 2.0 x 10-7 Yes 

2 0.23 1.8 x 10-7 Yes 

3 0.24 1.6 x 10-7 Yes 

4 0.25 1.6 x 10-7 Yes 

5 0.25 1.6 x 10-7 Yes 

6 0.24 1.6 x 10-7 Yes 

7 0.26 1.6 x 10-7 Yes 

8 0.27 1.5 x 10-7 Yes 

9 0.24 1.5 x 10-7 Yes 

10 0.25 1.5 x 10-7 Yes 

 

 

The final phase of cyclotron testing was bombardment of the target disk with energetic 

protons. The evaluation criteria were the integrity of the main tank vacuum, lack of 

damage to the seals and target disk surface. The main tank vacuum was monitored and 

recorded before and during the testing.  The target surface and seals were examined 

and after each run was complete.  The results are listed in Table 7. 
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Table 7 : Beam Testing Results 
 

Test  

Current 

(uA) 

Time 

(min) 

Vacuum 

Integrity 

Seal 

damage 

Target surface 

finish 

1 20 15 OK None OK 

2 20 30 OK None OK 

3 20 60 OK None OK 

4 40 30 OK None OK 

5 40 60 OK None OK 

6 40 90 OK None OK 

7 60 30 OK None OK 

8 60 60 OK None OK 

9 60 90 OK None OK 

10 60 120 OK None OK 

 

At one point in the cyclotron testing, the cooling water flow into the target changer was 

restricted from the expected 0.5 gpm to 0.25 gpm.  This operational run at 60 uA for 1 

hour resulted in a slight deformation of the target disk on the beam side.  The surface of 

the target disk showed indication that the temperature had become close to the melt 

temperature of the material.  When the flow of 0.25 gpm was used to calculate the 

expected temperature of the beam side, the one dimensional model produced a 

resultant temperature of 581 oC.  This unplanned experiment indicated the safety margin 

of the model is closer to 2 times the melt temperature of the material.  The variation in 
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safety factor is most likely due to the 0.20 mm deep location of the majority of the heat 

load. 

5.3. Operational Testing 
 
After completing bench and cyclotron testing, the prototype solid target assembly was 

cleaned, packed and shipped for installation at the Fukui University Medical Center in 

Fukui Japan.  Fukui University supplied the processing expertise and equipment to 

complete the operational testing of the target assembly by producing the plated target 

disks as well as the post bombardment chemical processing for the copper-64 isotope. 

 

The solid target assembly was installed on beamline #1 of the existing 11 MeV cyclotron.  

The cyclotron based tests as described in section 5.2 were repeated, with no issues 

identified. The installation is shown in Figure 17.  

 

 

 

Figure 17 : Cyclotron Installation 
 

Target disks plated with approximately 100 μ m thickness of nickel-64 were prepared by 

the process optimized at Fukui University.  A typical target disk is shown in Figure 18.   
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Figure 18 : Plated Target Disk 
 

A plated target disk was loaded into the solid target system and rotated into the beam 

port position.  The target disk was bombarded with protons at a beam current of 40 μ A 

for 1 hour.  The target disk was then rotated to the service port position and 

automatically released from the target carousel, where it was allowed to drop into a 

shielded carrying container placed inside the moveable shielded enclosure.  The target 

disk was manually transported to a shielded processing enclosure where the dissolution 

and chemistry process for the copper-64 isotope was performed. This experiment was 

repeated 11 times with the production data summarized in Figure 19.  The data is for 

copper-64 production rates in mCi/uA-hr at End of Beam (EOB) based on thickness of 

the plated target material in μ m.  As can be seen, there is a general relationship 

between increasing target thickness and increasing isotope production. This is expected 

since increasing target thickness provides more material for nuclear reactions to occur. 

Since all experiments were performed at 40 μ A for 1 hour, the amount of copper-64 

produced was typically 30 mCi at EOB as shown where A = final activity: 

 

hrA

mCi
A

⋅
=

μ
75.0  · Aμ40  · mCihr 301 =  
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Figure 19 : Results from Copper-64 Testing 
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6. Summary and Conclusions  
 

The purpose of this work is to design a mechanism that would allow the bombardment of 

a solid target capable of being used to produce the PET isotope copper-64.  In order to 

have the maximum usefulness, the design needed to integrate many aspects of the 

current install base of cyclotrons and PET targets.  Specifically it would need to interface 

and operate with the existing cooling system, control system and physical space. 

 

The reaction rate of the nickel-64 (p,n) copper-64 reaction was studied to verify the 

production capability at 11 MeV. A one dimensional thermal approximation was used to 

identify critical material and geometric parameters that could be manipulated to increase 

performance.  The approximation indicated that it would be feasible to operate within the 

existing parameters. 

 

Based on the design specifications, a detailed design was completed and fabricated.  In 

testing at maximum beam current, the target disk and seals showed no signs of surface 

damage while the high vacuum integrity was maintained. Utilizing the design retrofitted 

onto an existing cyclotron, useful quantities of copper-64 were produced in operational 

testing at a host facility. 

 

 The design was demonstrated to be capable of enabling a commercial or research 

institution to begin a development program with radiopharmaceuticals produced from 

copper-64 without sacrificing existing production or research. While the design has been 

utilized to produce copper-64, the operational functionality of the system allows for the 

production of other solid target isotopes with similar conditions. 
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An expansion of the thermal model could provide design guidance for future work related 

to increased beam current or geometric configurations.  As the use of copper-64 related 

radiopharmaceuticals increases, the need to increase production beyond single dose 

levels will be necessary.  Also, other solid target materials might be developed which are 

more sensitive to the affects of thermal stress. It would be interesting to study the affects 

of integrating the cooling path into the target disk.  This might be accomplished by a 

series of external grooves or internal pathways. 

 

In order to speed processing and reduce radiation exposure, mechanical automation of 

the loading step might prove to be beneficial as usage increases and multi-target disk 

production becomes standard practice. 
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